Computing Popov and Hermite forms of rectangular polynomial matrices
نویسندگان
چکیده
We consider the computation of two normal forms for matrices over the univariate polynomials: the Popov form and the Hermite form. For matrices which are square and nonsingular, deterministic algorithms with satisfactory cost bounds are known. Here, we present deterministic, fast algorithms for rectangular input matrices. The obtained cost bound for the Popov form matches the previous best known randomized algorithm, while the cost bound for the Hermite form improves on the previous best known ones by a factor which is at least the largest dimension of the input matrix.
منابع مشابه
Normal forms for general polynomial matrices
We present an algorithm for the computation of a shifted Popov Normal Form of a rectangular polynomial matrix. For specific input shifts, we obtain methods for computing the matrix greatest common divisor of two matrix polynomials (in normal form) or such polynomial normal form computation as the classical Popov form and the Hermite Normal Form. The method is done by embedding the problem of co...
متن کاملPreconditioning of Rectangular Polynomial Matrices for Eecient Hermite Normal Form Computation
We present a Las Vegas probabalistic algorithm for reducing the computation of Hermite normal forms of rectangular polynomial matrices. In particular, the problem of computing the Hermite normal form of a rectangular m n matrix (with m > n) reduces to that of computing the Hermite normal form of a matrix of size (n + 1) n having entries of similar coeecient size and degree. The main cost of the...
متن کاملConverting between the Popov and the Hermite form of matrices of differential operators using an FGLM-like algorithm
We consider matrices over a ring K [∂; σ, θ ] of Ore polynomials over a skew field K . Since the Popov and Hermite normal forms are both Gröbner bases (for term over position and position over term ordering resp.), the classical FGLM-algorithm provides a method of converting one into the other. In this report we investigate the exact formulation of the FGLM algorithm for not necessarily “zero-d...
متن کاملFast Parallel Computation of Hermite and Smith Forms of Polynomial Matrices*
Boolean circuits of polynomial size and poly-logarithmic depth are given for computing the Hermite and Smith normal forms of polynomial matrices over finite fields and the field of rational numbers. The circuits for the Smith normal form computation are probabilistic ones and also determine very efficient sequential algorithms. Furthermore, we give a polynomial-time deterministic sequential alg...
متن کاملOn lattice reduction for polynomial matrices
A simple algorithm for lattice reduction of polynomial matrices is described and analysed. The algorithm is adapted and applied to various tasks, including rank profile and determinant computation, transformation to Hermite and Popov canonical form, polynomial linear system solving and short vector computation. © 2003 Elsevier Science Ltd. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.01928 شماره
صفحات -
تاریخ انتشار 2018